
Chapter 6

Parallel Integral Curves

David Pugmire

Oak Ridge National Laboratory

Tom Peterka

Argonne National Laboratory

Chistoph Garth

University of Kaiserslautern

Understanding vector fields resulting from large scientific simulations is an
important and often difficult task. Integral curves, curves that are tangential
to a vector field at each point, are a powerful visualization method in this con-
text. Application of integral curve-based visualization to very large vector field
data represents a significant challenge due to the non-local and data-dependent
nature of integral curve computation, and requires careful balancing of com-
putational demands placed on I/O, memory, communication, and processors.
In this chapter we review several different parallelization approaches based on
established parallelization paradigms (across particles, and data blocks) and
present advanced techniques for achieving scalable, parallel performance on
very large data sets.

6.1 Introduction

The visualization of vector fields is a challenging area of scientific visualiza-
tion. For example, the analysis of fluid flow that governs natural phenomena
on all scales from the smallest (e.g. Rayleigh-Taylor mixing of fluids) to the
largest (e.g. supernovae explosions) relies on visualization to elucidate the pat-
terns exhibited by flows and the dynamical structures driving them. Processes
typically depicted by vector fields – such as transport, circulation and mixing
– are prevalently non-local in nature. Due to this specific property, methods
and techniques developed and proven successful for scalar data visualization
are not readily generalized to the study of vector fields. Hence, while it is

13



14 High Performance Visualization

technically feasible to apply such methods to directly derived scalar quanti-
ties such as vector magnitude, the resulting visualizations often fall short in
explaining the mechanisms underlying the scientific problem.

A large majority of visualization approaches devised to visualize vector
fields are based on the study of their integral curves. Naturally understood as
trajectories of massless particles, such curves are ideal tools to study transport,
mixing and other similar processes. These integration-based methods make use
of the intuitive interpretation of integral curves as the trajectories of massless
particles, and were originally developed to reproduce physical flow visualiza-
tion experiments based on small, neutrally buoyant particles. Mathematically,
an integral curve is tangential to the vector field at every point along curve,
and individual curves are determined by selecting an initial condition or seed
point, the location from which the curve begins, and an integration time over
which the virtual particle is traced.

Integral curves are applicable in many different settings. For example, di-
rect visualization of particles, and particle families and their trajectories gives
rise to such visualization primitives as streamlines, pathlines, streak lines, or
integral surfaces (e.g. [?]). To specifically study transport and mixing, integral
curves also offer an interesting change of perspective. Instead of considering
the so-called Eulerian perspective that describes evolution of quantities at
fixed locations in space, the Lagrangian view examines the evolution from
the point-of-view of an observer attached to a particle moving with the vec-
tor field, offering a natural and intuitive description of transport and mixing
processes. Consider for example the case of combustion: fuel burns while it
is advected by surrounding flow; hence the burning process and its governing
equations are primarily Lagrangian in nature.

Further, Lagrangian methods concentrate on deriving structural analysis
from the Lagrangian perspective. For example, Finite-Time Lyapunov Ex-
ponents (FTLE) empirically determine exponential separation rates among
neighboring particles from a dense set of integral curves covering a domain
of interest (e.g. [?]). From ridges, i.e. locally maximal lines and surfaces, in
FTLE, on can identify so-called Lagrangian Coherent Structures that approx-
imate hyperbolic material lines and represent the dynamic skeleton of a vector
field that drives its structure and evolution. For an overview of modern flow
visualization techniques, we refer the interested reader to [?].

Computationally, integral curves are approximated using numerical inte-
gration schemes (cf. [?]). These schemes construct a curve in successive pieces:
starting from the seed point, the vector field is sampled in the vicinity of the
current integration point, and an additional curve sequence is determined and
appended to the existing curve. This is repeated until the curve has reached
its desired length or leaves the vector field domain. To propagate an inte-
gral curve through a region of a given vector requires access to the source
data. If the source data can remain in main memory, it will be much faster
than a situation where the source data must be paged into main memory
from a secondary location. In this setting, the non-local nature of particle



Parallel Integral Curves 15

advection implies that the path taken by a particle largely determines which
blocks of data must be loaded. This information is a priori unknown and de-
pends on the vector field itself. Thus, general parallelization of integral curve
computation is a difficult problem for large data sets on distributed memory
architectures. Furthermore, to compute very large sets of integral curves, as
mandated by modern visualization and analysis techniques, further requires
distributed computation.

6.2 Challenges to Parallelization

In this chapter, we are aiming to both qualify and quantify the perfor-
mance of three different parallelization strategies for integral curve computa-
tion. Before we provide a discussion of particular parallelization algorithms in
Section ??, we will first present the challenges particular to the parallelization
of integral curve computation on distributed memory systems.

6.2.1 Problem Classification

The parallel integral curve problem is complex and challenging. To design
an experimental methodology that provides robust coverage of different as-
pects of algorithmic behavior, some of which is dataset dependent, we must
take into account the following factors that influence parallelization strategy
and performance test design.

Data Set Size. If the dataset is small, in the sense that if fits entirely
into the memory footprint of each task, then it makes most sense to distribute
the integral curve computation workload. On the other, if the dataset is larger
than will fit entirely in each tasks memory, then more complex approaches are
required that will involve data distribution and possibly computation distri-
bution.

Seed Set Size. If the problem at hand requires only the computation
of a thousand streamlines, parallel computation takes secondary precedence
to optimal data I/O and distribution; we refer to the corresponding seed set
as small, such small seed sets are typically most often encountered in inter-
active exploration scenarios where relatively few integral curve’s are interac-
tively seeded by a user. A large seed set may consist of many thousands of
seed points. Here, it will be desireable to distribute the integral curve com-
putational workload, yet data distribution schemes need to allow for efficient
parallel integral curve computation.

Seed Set Distribution. In the case where seed points are located densely
within the spatial and temporal domain of definition of a vector field, it is
likely that they will traverse a relatively small amount of the overall data.
On the other hand, for some applications like streamline statistics, a sparse



16 High Performance Visualization

seed point set covers the entire vector field evenly. This distribution results in
integral curve’s traversing the entire data set. Hence, the seed set distribution
is a significant factor in determining if performance stands to gain most from
parallel computation, data distribution, or both.

Vector Field Complexity. Depending on the choice of seed points, the
structure of a vector field can have a strong influence on which parts of the data
need to be taken into account in the integral curve computation process. Crit-
ical points or invariant manifolds of strongly attracting nature draw stream-
lines towards them, and the resulting integral curve’s seeded in or traversing
their vicinity remain closely localized. On the other hand, the opposite case
of a nearly uniform vector field requires integral curve’s to pass through large
parts of the data.

6.3 Approaches to Parallelization

Particle advection places demands on almost all components of a compu-
tational system, including memory, processing, communication, and I/O. Be-
cause of the complex nature of vector fields, seeding scenarios, and the types
of analyses, as outlined in Section ??, there is no single scalable algorithm
suitable for all situations.

Broadly speaking, algorithms can be parallelized in two primary ways.
Parallelization across the seed points, where seeds are assigned to processors,
and data blocks are loaded as needed, and parallelization across the data
blocks, where processors are assigned a set of data blocks, and particles are
communicated to the processor that owns the data block. In choosing between
these two axes of parallelization, the differing assignments of particles and data
blocks to processors will place differing demands on the computing, memory,
communication, and I/O sub-systems of a cluster.

These two classes of algorithms have a tendency of performing poorly due
to workload imbalance, either through an imbalance in particle to processor
assignment, or through loading too many data blocks, and becoming I/O
bound. Recent research has shown that hybrid parallelization approaches yield
the most promising results.

In the sections that follow, we outline algorithms that parallelize with
respect to particles, and data blocks, and discuss their performance charac-
teristics. Next, we outline several different strategies for achieving scalable
performance using hybrid parallelism. These strategies are aimed at keeping
a balanced work load across the set of processors, the design of efficient data
structures for handling integral curve computation, and efficiency in commu-
nication.

In the approaches outlined below, the problem mesh is decomposed into
a number of spatially disjoint data blocks. Each block may or may not have



Parallel Integral Curves 17

ghost cells for connectivity purposes. Each block has a time step associated
with it, thus two blocks that occupy the same space at different times are
considered independent.

6.3.1 Parallelization over Seed Points

The first of the traditional algorithms is one that parallelizes over the axis
of particles. In this algorithm, the seed points are uniformly assigned across
the set of processors. Thus, given n processors, 1/n of the seed points are
assigned to each processor. To enhance spatial locality, the seed points are
sorted spatially before being assigned to processors. As outlined in Algorithm
??, each processor integrates the points assigned to it until termination, or
until the point exists the spatial data block. As points move between blocks,
each processor loads the appropriate block into memory. In order to minimize
I/O, each processor integrates all particles to the edge of the loaded blocks,
loading a block from disk only when there is no more work to be done on the
in-memory blocks. Each particle is only ever owned by one processor, though
blocks may be loaded by multiple processors. Each processor terminates in-
dependently when all of its streamlines have terminated.

In order to manage the handling of blocks, this algorithm makes use of
caching of blocks in a LRU fashion. If there is insufficient memory for addi-
tional blocks when a new block must be loaded, the block that is purged is
that which was least recently used. Clearly, having more main memory avail-
able decreases the need for I/O operations, and increases the performance of
this algorithm.

Another method for handling of data blocks was introduced in [?] where
an extended hierarchy of memory layers is used for data block management.
Using local a local disk, either SSD or hard drive, careful management of data
block movement was shown to increase overall performance by about 2X.

Algorithm 1 Parallelization over seed points algorithm

while not done do
activeParticles = particles that reside in a loaded data block
inactiveParticles = particles that do not reside in a loaded data block
while activeParicles not empty do

advect particle
end while
if inactiveParticles then

Load a dataset from inactiveParticles
else

done = true
end if

end while



18 High Performance Visualization

Advantages:
This algorithm is straightforward to implement, requires no communica-

tion, and is ideal if I/O requirements are known to be minimal. For example,
if the entire mesh will fit into main memory of a single process, or if the flow
is known to be spatially local. In such cases, parallelization is trivial, and
parallel scaling would be expected to be nearly ideal. Further, the risk of pro-
cessor imbalance is minimized because of the uniform assignment of seeds to
processors.

Disadvantages: Because data blocks are loaded on demand, it is possible for
I/O to dominate this algorithm. For example, in a vector field with circular
flow, and a data block cache not large enough enough blocks, data will be con-
tinuously loaded, purged in the LRU cache. Additionally, work load imbalance
is possible if the computational requirements for particles differ significantly.
For example, if some particles are advected significantly farther than others,
the processors assigned to these particles will be doing all the work, while the
others sit idle.

6.3.2 Parallelization over Data

The second of the traditional algorithms is one that parallelizes over the
axis of data blocks. In this algorithm, the data blocks are statically assigned
to processors. Thus, given n processors, 1/n of the data blocks are assigned
to each processor. Each particle is integrated until it terminates, or leaves
the blocks owned by the processor. As a particle crosses block boundaries,
it is communicated to the processor that owns the data block. A globally
maintained active particle count is maintained so that all processors may
monitor how many particles have yet to terminate. Once the count goes to
zero, all processors terminate.

Advantages: This algorithm performs the minimal amount of I/O, each data
block is loaded once, and only once into memory. As I/O operations are orders
of magnitude more expensive that computation, this is a significant advantage.
In situations where the vector field is known to be uniform, and the seed points
are known to be sparse, this algorithm is well suited.

Disadvantages: Because of the spatial parallelization, this algorithm is very
sensitive to seeding, and vector field complexity. If the seeding is dense, only
the processors where the seeds lie spatially will be doing any work. All other
processors will be idle. Further in cases where the vector field contains critical
points, or invariant manifolds, points will be drawn to these spatial regions,
increasing the work load of some processors, while decreasing the work of the
rest.

Comparisons: To compare the performance of these two algorithms, we use



Parallel Integral Curves 19

Algorithm 2 Parallelization over data

activeParticleCount = N
while activeParticleCount > 0 do

activeParticles = particles that reside in a loaded data block
inactiveParticles = particles that do not reside in a loaded data block
while activeParicles not empty do

advect particle
if particle terminates then

activeParticleCount = activeParticleCount - 1
Communicate activeParticleCount update to all

end if
if particle moves to another data block then

Send particle to process that owns data block
end if

end while
Receive incoming particles
Receive incoming particle count updates

end while

FIGURE 6.1: Particles advected through the magnetic field of a supernova
simulation (A). Data courtesy of GenASiS. Particles advected through the
magnetic field of a fusion simulation (B). Data courtesy of NIMROD.



20 High Performance Visualization

FIGURE 6.2: Log scale plots of total time to advect 20,000 particles through
the astrophysics, and fusion datasets with both sparse and dense seeding sce-
narios.



Parallel Integral Curves 21

20,000 particles, and use both sparse and dense seeding configurations on an
astrophysics, and fusion simulations, shown in Figure ??. The total times, and
time spent doing IO operations for both simulations are shown in Figure ??.
Note that in the astrophysics simulation, parallelization across seeds exhibits
the superior performance, despite the fact that significantly more I/O is per-
formed. In this case, the additional I/O operations resulted in great processor
utilization, and a higher overall efficiency. In the fusion simulation, where the
flow circulates around the center of the simulation domain, the superior algo-
rithm is not as clear. If the seeding is sparse, then parallelization over data
blocks is superior, however, if the seeding is dense, then parallelization over
seeds is most efficient.

6.3.3 Workload Monitoring and Balancing

As outlined previously, parallelization over seeds or data blocks are subject
to workload imbalance. Because of the complex nature of vector field analysis,
it is often very difficult or impossible to know a-priori which strategy would
be most efficient. In general, where smooth flow, and complex flow can exist
within the same data set, it is impossible to get scalable parallel performance
using the traditional algorithms.

Research has shown that the most effective solution is a hybrid approach,
where parallelization is performed over both seed points, and data blocks.
In hybrid approaches, the resource requirements are monitoried, and re-
allocation of resources can be done dynamically based on the nature of a par-
ticular vector field, and seeding seeding scenario. By re-allocating as needed,
resources can be dynamically used in the most efficient manner possible.

The algorithm introduced in [?] is a hybrid between parallelization across
particles and data blocks discussed previously. In this hybrid algorithm, we
dynamically parition the workload of both particles and data blocks to pro-
cessors in an attempt to load balance on the fly based upon the processor
workloads and the nature of the vector field. It attempts to keep all pro-
cessors busy while also minimizing I/O by choosing either to communicate
particles to other processors or to have processors load duplicate data blocks
based on heuristics.

Since detailed knowledge of flow is often unpredictable or unknown, this
algorithm was designed to adapt during the computation to concentrate re-
sources where they are needed, distributing particles where needed, and/or
duplicating blocks when needed. Through workload monitoring and balanc-
ing, we achieve parallelization across data blocks and particles simultaneously,
and are able to adapt to the challenges posed by the varying characteristics
of integration-based problems.

In this hybrid algorithm, the processors are divided up into a set of work
groups. Each work group consists of a single master process, and a group
of slave processes. Each master is responsible for monitoring the work load
among the group of slaves, and making work assignments that optimize re-



22 High Performance Visualization

source utilization. The master makes initial assignments to the slaves based
on the initial seed point placement. As work progresses, the master monitors
the length of each slave’s work queue and the blocks that are loaded and reas-
signs particle computation to balance both slave overload and slave starvation.
When the master determines that all streamlines have terminated, it instructs
all slaves to terminate.

For scalable performance, work groups will coordinate between themselves,
and work can be moved from one work group to another, as needed. This
allows for work groups to focus resources on different portions of the problem
as dynamically needed.

The design of the slave process is outlined in Algorithm ??. Each slave
continuously advances particles that reside in data blocks that are loaded.
Similarly to the parallelize over seed points algorithm, the data blocks are
held in a LRU cache to the extent permitted by memory. When the slave can
advance no more particles or is out of work, it sends a status message to the
master and waits for further instruction. In order to hide latency, the slave
sends the status message right before it advances the last particle.

Algorithm 3 Slave process algorithm

while not done do
if new command from master then

process command
end if
while active particles do

process particles
end while
if state changed then

send state to master
end if

end while

The master process is significantly more complex, and outlined at a high
level in Algorithm ??. The master process is responsible for maintaining infor-
mation on each slave and managing their workloads. At regular intervals, each
slave sends a status message to the master so that it may keep accurate global
information. This status message includes the set of particles owned by each
slave, which data blocks those particles currently intersect, which data blocks
are currently loaded into memory on that slave, and how many particles are
currently being processed. Load balancing is achieved by observing the work
load of the group of slaves, and deciding when particles should be re-assigned
to slaves that already have the required data blocks loaded, or whether the
slave should load the data block, and then process the particles. All commu-
nication is performed using non-blocking send and receive commands.

The master process uses a set of four rules to manage the work in each
group.



Parallel Integral Curves 23

Algorithm 4 Master process algorithm

get initial particles
while not done do

if New status from any slave then
command ← most efficient next action
Send command to appropriate slave(s)

end if
if New status from another master then

command ← most efficient next action
Send command to appropriate slave(s)

end if
if Work group status changed then

Send status to other master processes
end if
if All work groups done then

done = true
end if

end while

1. Assign loaded block: The master sends a particle to a slave that has
the required data block already loaded into memory. The slave will add
this particle to the active particle list, and process the particle.

2. Assign unloaded block: The master sends a particle to a slave that
does not have the required data block loaded into memory. The slave will
load the data block into memory, add the particle to its active particle
list, and process the particle. The master process uses this rule to assign
initial work to slaves when particle advection begins.

3. Load block: The master sends a message to a slave instructing it to
load a data block into memory. When the slave receives this message,
the data block is loaded, and all particles requiring this data block are
moved into the active particle list.

4. Send particle: The master sends a message to a slave instructing it to
send particles to another slave. When the slave receives this command,
the particle is sent to the receiving slave. The receiving slave will then
place this particle in the active particle list.

The master in each work group monitors the load of the set of slaves. Using
a set of heuristics, detailed in [?], the master will use the four commands
above to dynamically balance work across the set of slaves. The commands
allow particle, and data block assignments for each processor to be changed
over the course of the integration calculation.

To compare the performance of these three algorithms, we use 20,000 parti-
cles, and use both sparse and dense seeding. Results of this hybrid algorithm,



24 High Performance Visualization

Chapters/ch6-pcurves/figures/Graphs002.png

FIGURE 6.3: Log scale plots of total time to advect 20,000 particles through
the astrophysics, and fusion datasets with both sparse and dense seeding sce-
narios.



Parallel Integral Curves 25

and the algorithms parallelizing over particles and data blocks using both
sparse and dense seeding scenarios are shown for the astrophysics and fusion
simulations in Figure ??. Note that in the astrophysics simulation, the hybrid
algorithm performs at a near optimal level, while performing significantly less
I/O. In the fusion simulation, where parallelization across data blocks is clearly
ideal, the hybrid algorithm performs well for sparse seeding, and out performs
dense seeding, while at the same time, performing significantly less I/O than
parallelization across seeds.

6.3.4 Hybrid Data Structure and Communication Algorithm

Large seed sets and large time-varying vector fields pose additional chal-
lenges for parallel integral curve algorithms. The first is the decomposition of
4D time-varying flow data in space and time, and we will discuss a hybrid
data structure that combines 3D and 4D blocks for computing time-varying
integral curves efficiently. The second challenge arises in both steady and tran-
sient flows but is magnified in the latter case: this is the problem of performing
nearest-neighbor communication iteratively while minimizing synchronization
points during the execution. We will present a communication algorithm for
the exchange of information among neighboring blocks that allows tuning the
amount of synchronization desired. Together, these techniques have been used
to compute 1/4 million steady-state and time-varying integral curves on vector
fields over 1/2 terabyte in size [?].

Peterka et al. [?] introduced a novel 3D/4D hybrid data structure which is
shown in Figure ??. It is called hybrid because it allows 4D space-time to be
viewed as both a unified 4D structure and a 3D space × 1D time structure.
The top row of Figure ?? illustrates this idea for individual blocks, and the
bottom row shows the same idea for neighborhoods of blocks.

The same data structure is used for both steady-state and time-varying
flows by considering steady-state as a single time-step of the time-varying gen-
eral case. A particle is a 4D (x, y, z, t) entity. In the left column of Figure ??, a
block is also 4D, with minimum and maximum extents in all four dimensions.
Each 4D block sits in the center of a 4D neighborhood, surrounded on all sides
and corners by other 4D blocks. A single neighborhood consists of 34 = 81
blocks: the central block and adjacent blocks in both directions in the x, y, z,
and t dimensions.

If the data structure were strictly 4D and not hybrid, the center and right
columns of Figure ?? would be unnecessary; but then all time-steps of a time-
varying flow field would be needed at the same time in order to compute
an integral curve. Modern CFD simulations can produce hundreds or even
thousands of time-steps, and the requirement to simultaneously load the entire
4D dataset into main memory would exceed the memory capacity of even the
largest HPC systems. At any given time in the particle advection, however, it is
only necessary to load data blocks that contain vector fields at the current time
and perhaps one time-step in the future. On the other hand, loading multiple



26 High Performance Visualization

3D Spatial Extent

(Xmin, Ymin, Zmin, Tmin)

(Xmax, Ymax, Zmax, Tmax)

(Xmin, Ymin, Zmin)

(Xmax, Ymax, Zmax)
(Tmin)

(Tmax)

time

t1
t0

t2

spatial block
vertices

temporal
block

time steps

t3
t2

t4

t5
t4

t6

4D Block

4D Neighborhood
(not drawn)

3D Spatial Neighborhood 1D Temporal Neighborhood

4D 3D 1D

1D Temporal Extent

FIGURE 6.4: The data structure is a hybrid of 3D and 4D time-space de-
composition. Blocks and neighborhoods of blocks are actually 4D objects. At
times, such as when iterating over a sliding time window (time block) consist-
ing of one or more time steps, it is more convenient to separate 4D into 3D
space and 1D time.

time-steps simultaneously often results in a more efficient data access pattern
from storage systems and reduced I/O time. Thus, the ability to step through
time in configurable-sized chunks, or time windows, results in a flexible and
robust algorithm that can run on various architectures with different memory
capacities.

Even though blocks and neighborhoods are internally unified in space-
time, the hybrid data structure enables the user to decompose space-time into
the product of space × time. The lower right corner of Figure ?? shows this
decomposition for a temporal block consisting of a number of individual time-
steps. Varying the size of a temporal block–the number of time-steps contained
in it–creates an adjustable sliding time window that is also a convenient way
to trade the amount of in-core parallelism with out-of-core serialization. Algo-
rithm ?? shows this idea in pseudocode. A decomposition of the domain into
4D blocks is computed given user-provided parameters specifying the number
of blocks in each dimension. The outermost loop then iterates over 1D tem-
poral blocks, while the work in the inner loop is done in the context of 4D
spatio-temporal blocks. The hybrid data structure just described enables this
type of combined in-core / out-of-core execution, and the ability to configure
block sizes in all four dimensions is how Algorithm ?? can be flexibly tuned
to various problem and machine sizes.

All parallel integral curve algorithms for large data and seed sets have one
thing in common: the inevitability of interprocess communication. Whether



Parallel Integral Curves 27

Algorithm 5 Main Loop

decompose entire domain into 4D blocks
for all 1D temporal blocks assigned to my process do

read corresponding 4D spatio-temporal data blocks into memory
for all 4D spatio-temporal blocks assigned to my process do

advect particles
end for

end for

exchanging data blocks or particles, nearest-neighbor communication is un-
avoidable and limits performance and scalability. Hence, developing an ef-
ficient nearest-neighbor communication algorithm is crucial. The difficulty
stems from the fact that neighborhoods, or groups in which communication
occurs, overlap. In other words, blocks are members of more than one neigh-
borhood: a block at the edge of one neighborhood is also at the center of
another, and so forth. Hence, a delay in one neighborhood will propagate to
another, and so on, until it affects the entire system. Reducing the amount
of synchronous communication can absorb some of these delays and improve
overall performance, and one way to relax such timing requirements is to use
nonblocking message passing.

In message-passing systems like MPI, nonblocking communication can be
confusing. Users often have the misconception that communication automat-
ically happens in the background, but in fact, messages are not guaranteed
to make progress without periodic testing of their status. After nonblocking
communication is initiated, control flow is returned to the caller and hope-
fully some communication occurs while the caller executes other code, but
to ensure this, the caller must periodically check on the communication and
perhaps wait for it to complete.

The question then becomes how frequently to check back on nonblocking
messages, and how long to wait during each return visit. An efficient commu-

Algorithm 6 Asynchronous communication algorithm

for all processes in my neighborhood do
pack message of block IDs and particle counts
post nonblocking send
pack message of particles
post nonblocking send
post nonblocking receive for IDs and counts

end for
wait for enough IDs and counts to arrive
for all IDs and counts that arrived do

post blocking receive for particles
end for



28 High Performance Visualization

50
10

0
15

0
20

0
25

0
30

0

Strong Scaling Performance

Number of Processes

T
im

e 
(s

)

1024 2048 4096 8192 16384 32768

Original
Optimized
Perfect scaling

FIGURE 6.5: The cumulative effect on end-to-end execution time of a hybrid
data structure and adjustable communication algorithm is shown for a bench-
mark test of tracing 256 K particles in a vector field that is 2048×2048×2048.

nication algorithm that answers these questions was introduced by Peterka
et al.[?] and is outlined in Algorithm ??. It works on the assumption that
nearest-neighbor communication occurs in the context of alternating rounds
of advection and communication of particles. In each round, new commu-
nication is posted, and previously posted messages are checked for progress.
Each communique consists of two messages: a header message containing block
identification and particle counts, and a payload message containing the actual
particle positions.

The algorithm takes an input parameter that controls the fraction of pre-
viously posted messages for which to wait in each round. In this way, the
desired amount of synchrony / asynchrony can be adjusted and allows the
”dialing down” of synchronization to the minimum needed to make progress.
In practice, we have found that waiting for only 10% of pending messages to
arrive in each round is the best setting. This way, each iteration makes a guar-
anteed minimum amount of communication progress without imposing unnec-
essary synchronization. Reducing communication synchronization accelerates
the overall particle advection performance and is an important technique for
communicating across large-scale machines where global code synchronization
becomes more costly as the number of processes increases.

The collective effect of these improvements is a 2× speedup in overall
execution time compared to earlier algorithms. This improvement is demon-



Parallel Integral Curves 29

TABLE 6.1: Performance Benchmarks

Thermal Hydraulics Hydrodynamics Combustion

●

●

●

●

●

10
0

15
0

20
0

25
0

30
0

Strong Scaling

Number of Processes

T
im

e 
(s

)

1024 2048 4096 8192 16384

●

● ●
●

●

20
0

25
0

30
0

35
0

40
0

Weak Scaling by Increasing No. of Particles

Number of Processes
T

im
e 

(s
)

4096 8192 12288 16384 20480

●

●
●

●

●

●

10
0

20
0

30
0

40
0

50
0

Weak Scaling by Inreasing No. of Particle and Time Steps

Number of Processes

T
im

e 
(s

)

128 256 512 1024 2048 4096

Strong scaling, 2048 x
2048 x 2048 x 1 time-step
= 98 GB data, 128K par-
ticles

Weak scaling, 2304 x
4096 x 4096 x 1 time-step
= 432 GB data, 16K to
128K particles

Weak scaling, 1408 x
1080 x 1100 x 32 time-
steps = 608 GB data, 512
to 16K particles

strated in Figure ?? with a benchmark test of tracing 1/4 million particles in a
steady state thermal hydraulics flow field that is 20483 in size. Peterka et al.[?]
benchmarked this latest fully-optimized algorithm using scientific datasets
from problems in thermal hydraulics, hydrodynamics (Rayleigh-Taylor insta-
bility), and combustion in a cross-flow. Table ?? shows these results on both
strong and weak scaling tests of steady and unsteady flow fields. The left-hand
column of Table ?? shows good strong scaling (where the problem size remains
constant) for the steady-state case, seen by the steep downward slope of the
scaling curve. The center column of Table ?? also shows good weak scaling
(where the problem size increases with process count), with a flat overall shape
of the curve. The right-hand column of Table ?? shows a weak scaling curve
that slopes upward for the time-varying case, and it demonstrates that even
after optimizing the communication, the I/O time to read each time block
from storage remains a bottleneck.

Advances in hybrid data structures and efficient communication algorithms
can enable scientists to trace particles of time-varying flows during their sim-
ulations of CFD vector fields at concurrency that is comparable with their
parallel computations. Such highly parallel algorithms are particularly im-



30 High Performance Visualization

portant for peta- and exascale computing, where more analyses will need to
execute at simulation run-time in order to avoid data movement and avail
full-resolution data at every time step. Access to high-frequency data that are
only available in situ is necessary for accurate integral curve computation;
typically simulation checkpoints are not saved frequently enough for accurate
time-varying flow visualization.

Besides the need to visualize large data sizes, the ability to trace a large
number of particles is also a valuable asset. While hundreds of thousands
or millions of particles may be too many for human viewing, a very dense
field of streamlines or pathlines is necessary for accurate follow-on analysis.
The accuracy of techniques such as identifying Lagrangian coherent structures
and querying geometric features of field lines relies on a dense field of particle
traces.

6.4 Conclusions

The analysis and visualization of vector fields is a challenging, and critical
capability for use in understanding complex phenomenae in scientific simu-
lations. Integral curves in vector fields provide a powerful framework for the
analysis of vector fields using a variety of techniques, such as streamlines, path-
lines, streak lines, streamsurfaces, as well advanced Lagrangian techniques,
such as FTLE, or Lagrangian Coherent Structures.

Due to the complexity of working with general vector fields outlined in
Section ??, stresses on the entire computational system are likely, including
computation, memory, communication and I/O. In order to obtain scalable
performance on large data sets, and large numbers of particles, care must
be taken to design algorithms that are adaptable to the dynamic nature of
particle advection. We have outlined several strategies for dealing with this
complexity. These include dynamic work load monitoring of both particles and
data blocks and re-balancing of work among the available processors, efficient
data structures, and techniques for maximizing the efficiency of communica-
tion between processors.

tpeterka
Text Box
Acknowledgment
We gratefully acknowledge the use of the resources of the Argonne and Oak Ridge Leadership Computing Facilities at Argonne and Oak Ridge National Laboratories. This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. Work is also supported by DOE with agree- ment No. DE-FC02-06ER25777.




